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where tin is the arrival time of the nth token of the ith 
ow. The synchronization node hasM in�nite capacity bu�ers, one for each 
ow, where arriving tokens are queued up (Figure 1).The synchronization operation consists of holding tokens in the bu�ers until one is availablefrom each 
ow. As soon as this happens, exactly one token is taken from each bu�er to forma group which is instantaneously released as a synchronized departure. The point processesXi(�) are assumed to be jointly stationary and ergodic, and the n-index numbering is such that::: < ti�1 < 0 � ti0 < ti1 < ::: < tin < tin+1 < ::: pathwise for i 2 f1; 2; 3; :::;Mg.The synchronization operation is assumed to begin at time 0, all bu�ers being emptybefore that time. Thus, the departure time of the nth (n � 0) token group istsn = maxftin; i 2 f1; 2; 3; :::;Mggand the synchronized process is S(t) =Xtsn 1lftsn=tg: (2)The process S(t) is obviously not stationary with respect to time shifts, since the extra conditionthat the bu�ers are empty at time 0 is imposed on the system.One of our primary goals is to study the departure 
ow of the synchronization nodeSr(t) = Xtsn � r 1lftsn�r=tg;which is just S(t) viewed from time r onwards, as r!1. Although some simple results areshown for general arrival processes, the most interesting ones are for the case where the Xi(t)are independent Poisson processes. In this case, it is shown that Sr(t) converges weakly to aPoisson process as r!1. That is, synchronization preserves the Poisson property of 
ows, asdo other basic operations like superposition, Bernoulli splitting and M/M/1 queueing [15, 18].This key property can be exploited for analyzing whole networks of service and synchronizationnodes, as discussed later.Our original motivation for analyzing the synchronization queue comes from the followingcanonical model of parallel processing. Consider M processors working in parallel on an on-going global computation, consisting of an in�nite sequence of consecutive tasks. Each processorproduces a sequence of local events corresponding to completions of subtasks assigned to it forexecution. A global event corresponds to the completion of a task, and each task is consideredcompleted only when all its corresponding subtasks have been executed. Assuming that theprocessing times for subtasks are independent and exponentially distributed with rate �, theprocesses representing local events at each processor are independent Poisson processes of equalrate � (load-balanced processors). A key question about this basic parallel processing paradigmis the determination of the statistics of the global event 
ow, which tracks the completionof tasks across all processors. It turns out that this is also Poisson. The model is basically asynchronization node with independent Poisson inputs of equal rate. Besides parallel processing,synchronization nodes (and networks of service and synchronization ones) have applications invarious other areas, including database concurrency control, 
exible manufacturing systems,communication protocols, etc.Jackson Networks (and their extensions) [6, 7, 13, 15, 18] are very popular models formanufacturing and computer networks, and have been extensively used in analyzing the perfor-mance of these systems. This is mainly due to the fact that the queue-size process of a Jackson2



Network is a Markov chain with a stationary distribution that is of the so-called \product-form"type. That is, one can compute the joint distribution of all the queue lengths in the network bytreating each queue in isolation and simply taking the product of the individual distributions.Moreover, Jackson Networks have the additional property that all output processes are Poisson.There are three basic operations performed on tra�c 
ows in the standard Jackson Networkmodel: superposition, Bernoulli routing, and �/M/1 queueing. Given that synchronization pre-serves the Poisson property, an interesting question that arises is whether it is possible to includesynchronization as a basic operation in the model, along with the three others named above (seeFigure 2), and yet retain the product-form stationary distributions for queue lengths. It turnsout that this is possible, allowing one to generalize the familiar Jackson Network model (andother quasi-reversible networks [15, 18]) to include both service and synchronization nodes.Understanding the dynamics of synchronization operations is important for the design ofmodern communication, computer and manufacturing systems. A powerful modelling frameworkfor studying the logical and algorithmic aspects of concurrency and synchronization is providedby Petri nets [3, 9, 19, 20]. Unfortunately, their performance analysis and evaluation is verydi�cult in a general setup, due to the emerging complexities [11, 19, 20]. Recent interestingapproaches for analyzing the dynamics of queueing networks with synchronization operations[3, 4, 5] have provided structural results (stability, existence of stationary states, stochasticbounds) under general stationary input 
ows. The synchronization node exhibits an essentiallypathological behavior, in the sense that it is inherently unstable. This has been the subject ofinteresting studies (see [1, 12]) in the past. However, due to this inherent instability, the natureof the departure 
ow has remained elusive and no joint treatment of service and synchronizationnodes in a Markovian setup has been possible.This paper contributes to the understanding of the dynamics of synchronization nodesin isolation, as well as in interaction with other synchronization and service nodes. The issueconcerning the nature of the node departure 
ows is resolved by introducing a technique whichuses \ghost tokens" to account for de�cits of real ones. We brie
y describe it at the end ofthis section and use it extensively in the proofs where its e�ectiveness is demonstrated. Thepaper also extends the Jackson Network paradigm to a generalized network model includingsynchronization nodes (Figure 2). This retains the basic \product-form" property of stationarydistributions, while it has more extensive modelling power than the standard model.We proceed by introducing some additional notation needed to describe the dynamics ofthe synchronization node. For any i 2 f1; 2; 3; :::Mg, let Ni(t) =P1n=0 1lf0<tin�tg be the numberof arrivals of Xi(t) to the synchronization node in (0; t] (we assume Ni(t) = 0 a.s. for t < 0),and let �i = E[Ni(1)] be the arrival rate of Xi(t). Further, let Ns(t) = P1n=0 1lf0<tsn�tg be thenumber of synchronized departures in (0; t]. Then the number of tokens in the ith bu�er at timet, Qi(t) = Ni(t)�Ns(t), is an almost surely right-continuous process with left-hand limits.Observe that, by de�nition of the synchronization operation, at least one of the Mbu�ers must be empty at any given instant. Speci�cally, in the 2-input case, this impliesminfQ1(t); Q2(t)g = 0 for all t > 0. ThusQ(t) = Q1(t)�Q2(t) (3)completely speci�es the status of the bu�ers at time t. Note also that Q(t) = N1(t)�N2(t). Analternative de�nition for S(t) in terms of Q(t) is given by the equationS(t) = X1(t)1lfQ(t�)<0g +X2(t)1lfQ(t�)>0g: (4)3



Intuitively, this means that an event occurs for S(�) at some time t, i� just prior to t (i.e. att�) one of the bu�ers is nonempty and there is an arrival to the other bu�er. Due to the rightcontinuity of the paths of Q(t), it is necessary in to use Q(t�) in (4) rather than Q(t).The focus of this paper is on the canonical case where the input 
ows are independentPoisson processes. Considerable emphasis is placed on the special case of equal arrival rates,because it naturally captures load balancing considerations that are essential in many practicalsituations. The rest of the paper is organized as follows. In Section 2 the synchronization nodewith independent Poisson inputs is studied in isolation. We establish the following results. Ifthere is a unique input of minimum rate, then the synchronization process converges to thatinput process strongly (in total variation); otherwise, it converges weakly (and provably notstrongly) to a Poisson process of rate equal to the minimum rate of the inputs. Similar resultsare shown to be true for �nite bu�ers in the limit as their sizes tend to in�nity. The analysisis based on exploiting the transience or null-recurrence of the Markovian queue-length processand its e�ect on the synchronization process.In Section 3 we focus on networks of synchronization and exponential service nodes, withBernoulli routing and independent Poisson exogenous arrivals, generalizing the standard JacksonNetwork model. It is shown that if the synchronization skeleton of the network is acyclic (a tokenvisits a synchronization node only once, but may visit a service node any number of times), thenthe stationary distribution of the joint queue-size process of the service nodes alone is product-form under standard stability conditions. Moreover, all network output 
ows converge weaklyto Poisson processes. The results extend to networks with quasi-reversible service nodes. Toprove the key results a special technique is employed, wherein \ghost tokens" are injected intonon-Poisson 
ows substituting for real tokens and turning them into Poisson ones. By showingthat the ghost token 
ow eventually dwindles to zero, we are able to prove that the real token
ows asymptotically converge to Poisson processes. This technique may have applications inother problems dealing with the convergence of stochastic 
ows.2 The Synchronization NodeFigure 1 illustrates the synchronization queue (node) in the M -input and 2-input cases. InTheorem 1 we show that the synchronization of two independent Poisson processes of equal rateconverges weakly to a Poisson process. Theorem 2 generalizes this result to the M -
ow case.In Theorem 3 we prove that strong convergence is impossible when synchronizing independentPoisson processes of equal rate. This group of results provides a precise characterization of theconvergence mode of the synchronization process.In a few sentences we describe the synchronization of arbitrarily distributed point pro-cesses, when they are of unequal rates. Suppose that we have two stationary and ergodic pro-cesses X1(t) and X2(t) of rates �1 and �2 respectively. Further suppose that �1 < �2 and thatsynchronization begins at time 0 (both bu�ers being empty before that time). Since X2(t) hasa higher rate than X1(t), there is a �nite random time � such that N2(t) > N1(t) for all t > � .This causes bu�er 2 to never empty after � , and so S(t) = X1(t) for all t > � . The followinglemma summarizes this simple observation.Lemma 1 Let the processes Xi(t), i = 1; 2; :::;M , be jointly stationary and ergodic with rates4



�i such that �1 < �2 � ::: � �M (i.e. there is a unique process of minimum rate). Then thereis an almost surely �nite random time � , such that S(t) = X1(t) for all t > � . Hence, Sr(t)converges in total variation [2] to the input process with the slowest rate as r!1.2.1 Synchronizing Two Independent Poisson Processes of Equal RatesWe now consider the more interesting problem of synchronizing independent Poisson processesof equal rates. We begin with the simpler 2-input case. Let X1(t) and X2(t) be two independentPoisson processes of rate �. De�ne Q(t) = Q1(t) � Q2(t), as in Equation (3). Then Q(t) is acontinuous-time, null-recurrent, birth-death chain on ZZ, with birth and death rates equal to �.The null-recurrence implies that limt!1 P (Q(t) = 0) = 0.We will show that Sr(t) converges weakly to a Poisson process, by showing that thedistributional di�erence between Sr(t) and the processP(t) = X1(t)1lfQ(t�)<0g +X2(t)1lfQ(t�)>0g +Y(t)1lfQ(t�)=0g; (5)goes to zero as r!1. The process Y(�) in (5) is a rate � Poisson process, independent of X1(�)and X2(�). Lemma 2 shows that P(t) is a rate � Poisson process, thus establishing the claim.For a discussion of weak convergence in the context of point processes see [10].Recall (see [7], for example) that �t is said to be the Gt-intensity of the stochastic pointprocess Z(t) adapted to some history Gt, i� �t satis�es the following conditions: it is a non-negative Gt-progressive process, such that R t0 �sds <1 almost surely for all t � 0, andE �Z 10 CsdZ(s)� = E �Z 10 Cs�sds�for all non-negative Gt-predictable processes Ct. We then have the following two facts (see [7]):Fact 1: If �t is the Ft-intensity of the point process Z(t) and �t is Gt-progressive for some historyGt such that FZt � Gt � Ft (FZt being the internal history of Z(t)), then �t is also the Gt-intensityof Z(t).Fact 2: Let Z(t) have Ft-intensity �t and let Gt be some history such that G1 is independentof Ft for all t � 0. Then �t is also the Ft _ Gt-intensity of Z(t), where Ft _ Gt is the smallest�-algebra containing both Ft and Gt.Note that a process may have a constant intensity � with respect to a �ltration, and thismakes it a Poisson process with respect to that particular �ltration. In order for it to be a rate� Poisson process in the standard sense, its intensity with respect to its own history (i.e. theminimal �ltration to which it is adapted) must be �. This is what Lemma 2 establishes.Lemma 2 (2-Input Case) If X1(t), X2(t) and Y(t) are independent Poisson processes withintensity � and Q(t) is the system size process of Equation (3), thenP(t) = X1(t)1lfQ(t�)<0g +X2(t)1lfQ(t�)>0g +Y(t)1lfQ(t�)=0gis a Poisson process with intensity �. 5



Proof Observe that P(t) is adapted to Ft = �fX1(s);X2(s);Y(s); 0 � s � tg and that,due to Fact 2 and the mutual independence of the processes X1(t), X2(t) and Y(t), all threeof them have Ft-intensity �. Further, the functions 1lfQ(t�)<0g, 1lfQ(t�)>0g and 1lfQ(t�)=0g areFt-predictable (being left-continuous and Ft-adapted). It readily follows thatE �Z 10 Cs dP(s) � = � E �Z 10 Cs ds � ;for all Ft-predictable processes Ct. Therefore, by Watanabe's Characterization Theorem (see[7]), P(t) is a Poisson process with respect to Ft. Since the internal history of P(t) is containedin Ft, Fact 1 implies that P(t) is Poisson with respect to its own history.We next show that the sequence of point processes fSr(t); r 2 IR+g converges weakly [10]to a Poisson process as r!1. As a consequence of Lemma 2 it su�ces to show that for everybounded continuous function f with compact support, the random variable RIR+ f(s) dSr(s)converges in distribution to RIR+ f(s) dP(s). Intuitively, a comparison of equations (4) and (5)shows that S(s) equals P(s) when Q(s�) 6= 0. In other words, so long as one of the two bu�ers isnon-empty the synchronized process equals the process arriving to the other (the empty) bu�er,which is Poisson. Thus, the synchronized process is a random mixture of Poisson processes(depending on which bu�er is nonempty) and the identically zero random process (if both bu�ersare empty). We exploit the null recurrence of Q(�) to establish that eventually the chance thatboth bu�ers are empty is arbitrarily small. Thus the \nuisance" term Y(s)1lfQ(s�)=0g in (5)goes to zero in distribution and we get the desired weak convergence.Theorem 1 (2-Input Case) The synchronization process viewed from time r onwards, Sr(t),converges weakly to a rate � Poisson process as r!1.Proof Let f be a bounded continuous function with support in [0; N ]. Setxr = Z N0 f(s)d �Y(r + s)1lfQ((r+s)�)=0g� ; yr = Z N0 f(s)dSr(s); and zr = Z N0 f(s)dP(r + s):Note that xr+ yr = zr and that zr equals z0 in distribution. We want to show that yr convergesin distribution to z0. NowEjxrj � E "Z N0 jf(s)jd �Y(r + s)1lfQ((r+s)�)=0)g�#� jf jmax E "Z N0 d �Y(r + s)1lfQ((r+s)�)=0)g�#= jf jmax � E "Z N0 1lfQ((r+s)�)=0)gds#= jf jmax � Z N0 P (Q((r + s)�) = 0)ds;the last equality following from Fubini's theorem. Since P (Q((r + s)) = 0) goes to zero asr!1, by dominated convergence the right-most term goes to zero as r!1. Therefore, xr!0in distribution. Now zr equals z0 in distribution and we conclude (see [8]; Theorem 4.4.6) thatyr = zr � xr converges to z0 in distribution, as was required.6



2.2 Extension to the M-input caseWe extend the results to the M -input synchronization node, brie
y discussing the additionalarguments needed. Consider M 2 ZZ+ independent Poisson processes Xi(t), i 2 f1; 2; 3; :::;Mg,all having rates equal to �. Let S(t) be their synchronization and let Qi(t) = Ni(t) �Ns(t) bethe queue length process in the ith bu�er at time t. For i 2 f1; 2; :::;Mg, de�nefMi (t) = ( 1 if Qi(t�) = 0 and Qj(t�) > 0 for every j 6= i0 otherwisefM0 (t) = 1� MXi=1 fMi (t) (6)The fMi (t); i > 1 indicate that at t� only the ith bu�er is empty, and fM0 (t) indicates that at t�more than one bu�er is empty. Thus,f fM0 (t) = 1 g = [i6=jf Qi(t�) = Qj(t�) = 0 g: (7)Analogous to (4) we de�ne SM (t) asSM (t) = MXi=1 fMi (t)Xi(t): (8)and show that as r!1, SMr (t) = SM (r + t)1lfr+t>0g converges weakly to the processPM (t) = MXi=1 fMi (t)Xi(t) + fM0 (t)Y(t); (9)where Y(t) is a Poisson process of rate � independent of Xi(t), i 2 f1; 2; 3; :::;Mg as r!1.Lemma 3 (M-Input Case) If Xi(t), i 2 f1; 2; :::;Mg and Y(t) are independent Poisson pro-cesses of rate �, then PM (t) =PMi=1 fMi (t)Xi(t) + fM0 (t)Y(t) is a Poisson process of rate �,where fMi (t) i 2 f1; 2; :::;Mg and fM0 (t) are de�ned in Equation (6).Proof Similar to the proof of Lemma 2.In the next lemma we show that the chance that more than one bu�er is empty goes tozero eventually. This is used in Theorem 2 in the same way as null-recurrence of Q(t) was usedin Theorem 1.Lemma 4 With fM0 (t) de�ned as in (6), limt!1E[fM0 (t)] = 0.Proof Since E[fM0 (t)] = P (fM0 (t) = 1), from Equation (7) we see that it su�ces to showthat Pi6=j P (f Qi(t�) = Qj(t�) = 0 g)!0, as t!1. Letting Btij = f Qi(t�) = Qj(t�) = 0g, itsu�ces to show that P [Btij ]!0 for every i; j. De�ne Qij(t) = Qi(t) �Qj(t) = Ni(t) �Ns(t) �(Nj(t) � Ns(t)) = Ni(t) � Nj(t). Then, Qij(t) is a null-recurrent birth-death chain. SinceBtij � fQij(t�) = 0g, P [Qij(t�) = 0]!0 implies that P [Btij]!0 for each i; j.7



Theorem 2 (M-Input Case) The synchronization of M independent Poisson processes viewedfrom time r onwards, SMr (t) = MXi=1 fMi (r + t)Xi(r + t) 1lfr+t>0g;converges weakly to a Poisson process as r!1.Proof As in Theorem 1, let the function f be continuous with support in [0; N ]. This timeset xr = R N0 f(t) d �fM0 (r + t)Y(r + t)� ; yr = RN0 f(t) dSMr (t); zr = RN0 f(t) dPM (r + t); z =R N0 f(t) dPM (t) and use the fact (from Lemma 4) that E[fM0 (r + t)]!0 as r!1 to concludethat xr goes to zero in distribution. The rest follows from the method of Theorem 1.2.3 Convergence and CouplingA point process X(t) is said to couple in �nite time with another point process Y(t), if thereis a random time � < 1, such that X(s) = Y(s) for all s > � almost surely. This is exactlywhat happens under the conditions of Lemma 1. A natural question that arises is whether thesynchronization, SM (t), of independent Poisson processes of equal rate couples in �nite timewith some other Poisson process Z(t). This will strengthen the results of Theorems 1 and 2.Unfortunately, as Theorem 3 shows, such a coupling is not possible. This negative result furthercharacterizes the convergence mode of the synchronization process.The basic idea of the proof is this: If the synchronization process SM (�) couples with aPoisson process, say Z(�), then the epochs of the two processes coincide after a �nite randomtime. But the inter-epoch times of Z(�) are exponentially distributed, and are always strictlystochastically dominated by the inter-epoch times of SM (�), and hence a coupling between Z(�)and SM (�) cannot occur. We argue as follows. It is clear that the inter-epoch times of SM (�)are atleast exponentially long because we are always waiting for one component token to arriveat the synchronization bu�ers. And almost surely, given any T , there is a time t > T atwhich more than one synchronization bu�er is empty. When this happens the time to the nextsynchronization is the sum of more than one exponential time. This causes the strict stochasticdominance and the resulting lack of coupling.Theorem 3 When synchronizing M independent Poisson processes of rate �, coupling the syn-chronization process SM (t) in �nite time with a Poisson process of rate � is impossible.Proof Arguing by contradiction suppose that there is a rate � Poisson process Z(t) and a�nite random time � <1, such that SM (s) = Z(s) for all s > � almost surely. De�ne Nz(t) =P1n=0 1lf0<tzn�tg to be the number of points of Z(t) in (0; t], where the tzn are the epoch times forZ(t). By the Central Limit TheoremNz(t)� � tp�t D�! N (0; 1); (10)where N (0; 1) is the Gaussian distribution with zero mean and unit variance. Now, � < 1implies that Nz(�) <1 almost surely, which further implies that Nz(�)=p �t!0 almost surely,8



as t!1. Thus, Nz(t)�Nz(�)� � tp�t = Nz(t)� � tp�t + Nz(�)p�t D�! N (0; 1);and for any � > 0 we havelimt!1P �Nz(t)�Nz(�) � � t+ �p�t� = limt!1P �Nz(t)�Nz(�)� � tp�t � �� = �(�); (11)where �(�) = 1p2� R1� e�x2=2 dx. We now observe that given a K 2 IR+, in order to have atleast K synchronizations in [0; t], we must have at least K arrivals to each of the M bu�ers in[0; t], so f Ns(t) � K g � M\i=1f Ni(t) � K g:Taking K = � t+ �p�t, we getP �Ns(t) � � t+ �p�t� � P  M\i=1f Ni(t) � � t+ �p�t g! = MYi=1P �Ni(t) � � t+ �p�t�= �P �N1(t) � � t+ �p�t��M ;since the Poisson processes Ni(t) are independent with equal rates. Applying the Central LimitTheorem to N1(t), we get limt!1P �N1(t) � � t+ �p�t� = �(�):Thus,limt!1P �Ns(t) � � t+ �p�t� � limt!1 �P �N1(t) � � t+ �p�t��M = (�(�))M < �(�); (12)since �(�) < 1. On the other hand, since we have supposed that the coupling exists, we havethat SM (s) = Z(s) for all s > � almost surely, so Ns(t)�Ns(�) = Nz(t)�Nz(�) for every t > � .Moreover, since Ns(�) <1, we have Ns(�)=p �t !0 almost surely. Therefore, as t!1Ns(t)� � tp�t � Ns(�)p�t = Ns(t)�Ns(�)� � tp�t = Nz(t)�Nz(�)� � tp�t D�! N (0; 1):Thus, limt!1P �Ns(t) � � t+ �p�t� = �(�);which contradicts (12). Therefore, no such coupling exists.2.4 The Case of Finite Bu�ersWe next consider the synchronization of Poisson processes which arrive at bu�ers of �nite ca-pacity. The queue-length process ~Q(t) = (Q1(t); Q2(t); :::; QM (t)) is a �nite state Markov chainand therefore has a stationary distribution. Consider the 2-input case �rst. Let tokens arrivingaccording to independent Poisson processes of rates �1 and �2 be queued into bu�ers of sizes N19



and N2 respectively. Tokens arriving at full bu�ers are blocked and rejected. The state space,S, of the Markov chain is the set f(0; N2); :::; (0; 1); (0; 0); (1; 0); :::; (N1 ; 0)g. The correspondingequilibrium distribution, f�(i; j); (i; j) 2 Sg, is given by �(i; j) = caibj, where a = �1=�2,b = �2=�1 and c is a normalizing constant. Note that the stationary distribution is product-formin the 2-input case.Now consider the M -queue case (M � 3). Let Xi(t); i 2 f1; 2; ::;Mg be independent rate� Poisson processes, arriving at bu�ers of size Ni. Since at least one queue is empty at any giventime, we see that the rate matrix R of ~Q(t) has just two types of entries. The �rst type isR((y1; ::; yj ; ::; yk; ::; yM ); (y1; ::; yj ; ::; yk + 1; ::; yM )) = �kfor yj = 0 and yk = 0; ::; Nk � 1; k 6= j, corresponding to the case that the j-th queue is emptyand there is an arrival in the k-th one (k 6= j). The second type isR((y1; ::; yj ; ::; yk; ::; yM ); (y1 � 1; ::; yj ; ::; yk � 1; :::; yM � 1)) = �jfor yj = 0 and yk > 0; k 6= j, corresponding to the case that only the j-th queue is empty andthere is an arrival to that queue, triggering a synchronized departure from all queues. In light ofthe result for the 2-input case one wonders whether the stationary distribution is product-form.Unfortunately, as simple examples show, this is not true.A consequence of the null-recurrence or transience of the joint queue-size process of in�nite-bu�er synchronization is this: When synchronizing independent Poisson processes of equal rateat �nite bu�ers, the synchronized process can be made to be as close to a Poisson process indistribution as desired, by making the bu�ers suitably large. The details are as follows.Suppose that we are synchronizingM independent Poisson processesXi(t); i 2 f1; 2; :::;Mgof rate equal to �. All the synchronization bu�ers are assumed to be of capacity k. Therefore thejoint queue-size process ~Qk(�) = (Qk1(�); Qk2(�); :::; QkM (�)) is a positive recurrent Markov chain.De�ne the functions gki (t); i = 0; 1; 2; :::;M as followsgki (t) = ( 1 if Qki (t�) = 0 and Qkj (t�) > 0 for every j 6= i0 otherwisegk0 (t) = 1� MXi=1 gki (t):The synchronized process, SM;k(t), is given bySM;k(t) = MXi=1 gki (t)Xi(t):We are interested in the asymptotic distribution of the process SM;k(t) as k!1.For each �nite k there is an equilibrium distribution for ~Qk(t). Arguing as in Lemma 4,we get that limk!1E(gk0 (t)) = limk!1 P (gk0 (t) = 1) = 0: And, an argument similar to Lemma3 shows that the process PM;k(t) = MXi=1 gki (t)Xi(t) + gk0 (t)Y(t)is Poisson, where Y(t) is a rate � Poisson process independent of all the other processes. Giventhat limk!1E(gk0 (t)) = 0, it follows in a manner similar to the proof of Theorem 2 that SM;k(t)converges weakly to a Poisson process as k!1.10



3 Generalized Jackson Networks of Service & SynchronizationNodesIn this section we show how synchronization operations may be included in queueing networks,extending the classical Jackson Network model and its associated properties.For the sake of completeness, we recall a few basic facts about Jackson Networks. In theirstandard form, such networks [6, 13, 15, 18] consist of independent exponential service nodes,where arriving tokens (jobs) are served and then Bernoulli-routed to other nodes (or back to thesame one). The net input process at a node is the superposition of all token 
ows that arrive(either from outside or after being routed) at that node. All exogenous arrivals are independentPoisson processes. The overall queue-length process is a Markov chain. When the total averagearrival rate is less than the service rate at every node of the network, the queue-length processadmits a product-form stationary distribution. Moreover, in stationarity, the 
ows of tokensdeparting from the network are independent Poisson processes.An example of a Generalized Jackson Network, including synchronization operations, isshown in Figure 2. After being served or synchronized, tokens are Bernoulli-routed to variousnodes. The net input process at each node is the superposition of all arriving processes, syn-chronized or otherwise. In Figure 2, for example, the net input into node 5 is a synchronizationof outputs from nodes 1 and 2 superposed with an output 
ow from node 4. Exogenous arrivalsare Poisson, and the bu�ers of all nodes have in�nite capacity.It is easy to see that the Generalized Jackson Network model retains its Markovian naturewith respect to a system state consisting of the queue-length processes of all nodes (serviceand synchronization). However, the synchronization queues are transient or null-recurrent and,hence, induce the same behavior on the overall Markov chain. Under stability conditions on theservice nodes, we are interested in determining whether the distribution of the queue-lengthsat these nodes (exclusively) is asymptotically product-form. We �nd this to be true when thesynchronization skeleton is acyclic.3.1 Generalized Jackson Networks with Acyclic Synchronization SkeletonThroughout this section we assume that a token cannot visit a synchronization node twice,almost surely, although it may visit a service node any number of times. Consider a queueingnetwork N consisting of M exponential server nodes and N synchronization nodes. Given is aset of routing probabilities fpijg1� i;j�M+N where pij is the probability that a token joins node jimmediately after leaving node i (i and j can be either of the service or synchronization types).Nodes i and j are said to be connected by a route if there is a strictly positive probability of atoken arriving at j after leaving i, either directly or through a series of intermediate nodes (notethat the route is directed from i to j). Otherwise, nodes i and j are said to be disconnected.We impose the following key condition: Every synchronization node is disconnected from itself,and hence the synchronization skeleton is acyclic.We say that a service node j is an o�spring of a synchronization node i if there is a routefrom i to j. The acyclicity of the synchronization skeleton partitions the service nodes intostages Sk, k = 0; 1; 2; :::, where Sk consists of service nodes that are the o�spring of precisely ksynchronization nodes. Thus the network N can be decomposed into stages of smaller Jackson11



subnetworks of service nodes only (possibly with feedback), which interface through the syn-chronization nodes. A K-stage network is one in which at least one service node is the o�springof K synchronization nodes. The example of Figure 7 is a 3-stage network. It is composed ofthe subnetworks N1;N2;N3;N4;N5 and N6 each consisting of service nodes only. Each Ni isa standard Jackson network in itself. For this example, S0 = N1 [N2 [N3, S1 = N4 [N5and S2 = N6. Note that all the synchronization nodes have been arranged on the boundariesbetween the service subnetworks.We discuss the stability of a service node before stating the main theorem of this section.Service nodes that are not the o�spring of any synchronization node are stable if the net input
ow (exogenous arrivals and tokens routed from this or other nodes) has an average rate that isstrictly smaller than the service rate of the node. In considering the stability of service nodeswhose input may contain a synchronized process, the acyclicity of the synchronization skeletonallows us to treat the synchronized process as an exogenous input. Further, Equations (8) and(9) imply that a synchronized 
ow process is stochastically dominated by a Poisson process ofasymptotically equal rate. Hence, we may replace the synchronized process by its associatedPoisson process as far as stability is concerned. Accordingly, a service node which is the o�springof a synchronization node is said to be stable if the net input process (consisting of exogenousarrivals, synchronized or otherwise, and routed tokens) has an average rate strictly smaller thanthe service rate of the node.The following theorem, which is the main result of this section concerns the behavior ofthe network N under independent Poisson inputs. For ease of exposition, we state and provethe theorem assuming that the network N consists of precisely two stages. The acyclicity of thesynchronization skeleton allows one to generalize the results to an arbitrary number of stagesby induction.Theorem 4 Consider a 2-stage Generalized Jackson Network N consisting of M service nodesand N synchronization nodes subject to independent Poisson inputs at time 0, having been emptyprior to that time. Let ~Q(t) = (Q1(t); Q2(t); :::; QM (t))be the joint queue-size process at the service nodes and let~D(t) = (D1(t);D2(t); :::;DL(t))be the vector of departure processes from N at time t > 0. If all the service nodes of the networkN are stable, then as t!1, (1) ~Q(t) converges to a product-form distribution with geometricallydistributed marginals and (2) ~D(r + �), the vector of network departure processes viewed fromtime r onwards, converges in distribution to a vector of independent Poisson processes as r!1.Proof Decompose the service nodes of N into the two stages S0 and S1 depending on whetherthey are the o�spring of a synchronization node or not. Since S0 forms a classical JacksonNetwork that is assumed to be stable, both parts of the theorem follow easily for nodes in S0.In particular, the departure processes of S0 couple with independent Poisson processes after a�nite random � [18]. Now, some of these departure processes are input to S1, either directlyor through synchronization nodes. One can now see that in order to complete the proof ofthe theorem we �rst need to establish two separate results: (1) The queue-size process at anexponential server queue with synchronized inputs converges to a geometric distribution and12



the corresponding departure process converges to a Poisson process, and (2) the joint queue-sizeprocess at service nodes in S0 and S1 is asymptotically product-form.These two results, which are interesting in their own right, are proved in the next twosubsections (Theorems 5 and 6). The proof of Theorem 4 is completed at the end of Section 3.3.3.2 The SM/M/1 Queue: Synchronized Poisson Inputs with ExponentialServiceConsider the canonical model shown in the left-hand-side of Figure 3. X1(t) and X2(t) areindependent Poisson processes of rates �1 and �2 respectively and S(t) is their synchronization,as de�ned in Section 2. S(t) forms the input to an exponential server queue of service rate�. Q1(t) and Q2(t) are the number of tokens in the two queues of the synchronization node,while Q(t) is the number of tokens in the service queue. This the simplest possible network,consisting of a synchronization node and an exponential service node in tandem. We call it theSM/M/1 Queue. It can also be viewed as a resequencing queue (see [4]) with non-integrabledelay sequence. We are interested in the asymptotic distribution of the queue-size at the servicenode and in the statistics of the departure process D(t). The following result easily extends tothe M -input case; for the sake of simplicity and clarity of exposition we state and prove it forthe 2-input case of Figure 3.Theorem 5 Consider the queue-size process, Q(t), of an SM/M/1 queue with service rate �.If � = �=� < 1, where � = minf�1; �2g, thenlimt!1P (Q(t) = k) = (1� �) �k;and the departure process D(t) from the service node converges weakly (when �1 = �2, andstrongly otherwise), to a Poisson process as t!1.Proof If �1 > �2, then S(t) = X2(t) a.s. after some �nite random time. Theorem 5 followstrivially since the service queue becomes a standard M/M/1 queue, and Q(t) couples in �nitetime almost surely with the queue-length process of a standard M/M/1 queue fed by the Poissonprocess X2(t) alone. Thus, the output process from the service node converges strongly to aPoisson process.The more interesting case of � = �1 = �2 is easier studied by the introduction of themodi�cation shown in the right-hand-side of Figure 3. The essential di�erence is that the netinput process to the exponential server queue, A(t), is now a superposition of the output processS(t) of the synchronization node and a spurious process Y(t) 1lfQ1(t�)=0;Q2(t�)=0g, where Y(t)is a rate � Poisson process, independent of X1(�) and X2(�) and of the service process. Theanalysis of the modi�ed system provides a solution to the original problem as follows.We colour the tokens ofA(t) blue or yellow depending on whether they originate from S(t)or Y(t). From Lemma 2, A(t) is a rate � Poisson process, independent of the server. Thus, theservice node is a standard M/M/1 queue, and its queue-length process Q0(t), consisting of bothblue and yellow tokens, converges in total variation to a geometric distribution with parameter� = �=� [16, 18]. Since we are interested in showing that Q(t), the number of blue tokens,13



converges to a geometric distribution with parameter �, and Q(t) = Q0(t)�QY (t), it su�ces toshow that limt!1 P (QY (t) � 1) = 0.Due to the memoryless property of the exponential server, we may stipulate that bluetokens take absolute priority over yellow tokens for service. Speci�cally, if an arriving bluetoken �nds a yellow token in service, then it gets the remainder of the service owed to the yellowtoken (which is again exponential, independent of past service times). After the blue tokendeparts the yellow token is served from the beginning, so long as there are no other blue tokensin the queue. Therefore, the yellow tokens are invisible to the blue tokens in the sense that theydo not alter the dynamics of the blue tokens. We will occasionally refer to the yellow tokens asghost-tokens. In Figure 3 yellow (ghost) tokens are represented by circles, and blue tokens arerepresented by discs.We show that limt!1 P (QY (t) � 1) = 0 in three steps. Steps 1 and 2 ensure that yellowtokens do not remain in the system inde�nitely, and Step 3 shows that the number of freshyellow arrivals is dwindling. Together, all three imply the desired result. Thus, at large timesthe ghost-tokens get "exorcized" and the queue is left with the blue (real) tokens.Step 1: Given � > 0 we can �nd a large enough M 2 ZZ+ and t1 2 IR such that P (Q0(t) �M) >1� � for all t > t1.Proof Since limt!1 P (Q0(t) �M) =PMk=1(1� �) �k, we may �rst choose M and then t1 withthe desired properties.Step 2: For � and t1 as in Step 1, we have that for every t > t1 there exists a large enoughN 2 ZZ+, such that P (Q0(s) = 0 for some s 2 [t; t+N ]) > 1� 2�:Proof Let the random variable TM denote the time needed for the service queue to becomeempty, given that it starts at time t with M or fewer tokens in its bu�er. By the stationarityof the arrival and service processes, the distribution of TM is independent of the starting timet. Since the queue is stable, TM <1 almost surely [16, 18]. Thus, there exists a large enoughN such that P (TM < N) > 1 � �. Moreover, from Step 1 we have P (Q0(t) � M) > 1 � � forevery t > t1. Since fQ0(t) �M ;TM < Ng � fQ0(s) = 0 for some s 2 [t; t+N ]g, it follows thatP (Q0(s) = 0 for some s 2 [t; t+N ]) > 1� 2�:Step 3: Given � > 0, there exists a t2 such that P (NY [t; t + N ] � 1) < � for all t > t2, whereNY [t; t+N ] is the number of yellow (ghost) arrivals to the service queue in [t; t+N ].Proof By Chebyshev's inequality and the de�nition of stochastic intensity, we getP (NY [t; t+N ] � 1) � E(NY [t; t+N ]) = E "Z t+Nt d�Y(s) 1lfQ1(s�)=0=Q2(s�)g�# == �E "Z t+Nt 1lfQ1(s�)=0=Q2(s�)g ds# = � "Z t+Nt P �Q1(s�) = 0 = Q2(s�)� ds# :Using the dominated convergence theorem and the null-recurrence of (Q1(�); Q2(�)), we see thatthe rightmost expression goes to zero as t!1, implying the desired result.The fact that limt!1 P (QY (t) � 1) = 0 now follows easily from the previous three steps.Indeed, note that fNY [t; t+N ] = 0g \ fQ0(s) = 0 for some s 2 [t; t+N ]g � fQY (t+N) = 0g.Therefore, Steps 1, 2 and 3 imply that, for any time t > max(t1; t2), we have that P (QY (t+N) �1) < 3�. Thus, as t!1, the chance that there are yellow (ghost) tokens in the service queuebecomes arbitrarily very small, fading away to zwro. This concludes the proof of part 1 of thetheorem. 14



To show part 2, let D0(t) = D(t) +DY (t) be the overall departure process of the servicenode, consisting of both blue and yellow (ghost) tokens. In order to prove that D(t) convergesweakly to a Poisson process, it is enough to show that for any bounded, continuous function fwith compact support Z f(s)d(DY (t+ s))!0 (13)in distribution as t!1 ([8], Section 4.4), since we already know that D0(t) converges in to-tal variation (and hence weakly) to a Poisson process. But this follows from the fact thatE[j R f(s)d (DY (t+ s)j] � jf jmaxE[R d (DY (t+ s)] = jf jmax �E[R 1lfQY ((t+s)�)>0;Q((t+s)�)=0gds],the equality following from the fact that the stochastic intensity of DY (t) with respect to thehistory of the service queue (including that of blue and yellow tokens) is �1lfQY (t�)>0;Q(t�)=0g(see [7]). Using the dominated convergence theorem and the fact that P (QY (t) > 0) goes tozero (from the �rst part of this proof), we see that the last term in the previous expression goesto zero, implying (13). This completes the proof of the theorem.It is clear that the same proof also works when three or more independent Poisson arrivalprocesses are synchronized before arriving at an exponential server queue.3.3 Interfacing Service Stages Through Synchronization QueuesThe next step is to interface stages of service nodes through synchronization queues. The studyis centered on a representative simple network shown in Figure 4, but teh arguments extendnaturally to teh general case. In Figure 4, X1(t) and X2(t) are independent Poisson processesof rates �1 and �2 arriving at independent exponential service queues 1 and 2 with rates �1 and�2 respectively, such that both M/M/1 queues are stable (�1 < �1, �2 < �2). The input X3(t)to service queue 3 is the synchronization of the departures from nodes 1 and 2.Let Qi(t) be the queue-size process at service node i 2 f1; 2; 3g. Suppose all queues are ini-tially empty and �3 is larger than minf�1; �2g (so that service queue 3 is also stable). Let QA(t)and QB(t) be the queue-lengths of the synchronization bu�ers holding departures from nodes 1and 2 respectively. We want to show that the joint process (Q1(t); Q2(t); Q3(t)) tends to a limitthat is product-form with appropriate marginals as t!1, and that the output process D3(t)converges to a Poisson process. The convergence of each of the marginals of (Q1(t); Q2(t); Q3(t))to the appropriate geometric distribution is quite obvious, given the previous discussion of theSM/M/1 queue; what we need to prove is that the joint distribution of Q1(t); Q2(t); Q3(t) isasymptotically product-form.In classical Jackson Networks the main reason leading to a product-form stationary distri-bution is quasi-reversibility ([15, 18]), which is an equilibrium property. In networks with serviceand synchronization nodes no global equilibrium can be reached, due to the null-recurrence ortransience of the queue-length processes of the synchronization queues. However, the basic ideaof introducing \ghost tokens" (as in the analysis of the SM/M/1 queue) to make up for a de�citof real tokens proves useful again in showing the following result.Theorem 6 For the network in Figure 4, we have thatlimt!1P (Q1(t) = i;Q2(t) = j;Q3(t) = k) = (1� �1)(1 � �2)(1� �3)�i1�j2�k3 (14)15



for i; j; k 2 ZZ+, where �1 = �1�1 , �2 = �2�2 , �3 = minf�1;�2g�3 , and the departure process from eachnode converges weakly (and in special cases strongly) to a Poisson process as t!1.Proof If �1 > �2, thenX3(t) =D2(t) after some �nite time almost surely. Hence, X3(t) couplesin �nite time with a rate �2 Poisson process. Using standard quasi-reversibility arguments[15, 18], it is easy to see that the distribution of (Q2(t); Q3(t)) tends to a product-form limitas t!1, while the service node outputs converge in total variation to Poisson processes. Sincearrival times at node 3 coincide with departure times from node 2 after a �nite random time,node 1 is decoupled from the system and the result follows.Next suppose that �1 = �2 = �. It is clear that the limiting distribution of (Q1(t); Q2(t))is product-form with appropriate marginals. And, from Theorem 5, it follows that Q3(t) tendsto a geometric distribution. However, what is not immediate is that (Q1(t); Q2(t); Q3(t)) jointlyconverges to a product-form distribution. We argue this as follows.Let us modify the actual system by introducing the processY1(t) = Y(t)1lfQA(t�)=0=QB(t�)gof ghost token arrivals, as in Figure 4. Y(t) is a Poisson process of rate � and is independentof all other arrival and service processes. The following steps applied to the modi�ed systemimplies the result.Step 1: The only arrivals to the network are the tokens of the exogenous arrival processes X1(t)and X2(t), and the ghost arrival process Y(t); all these processes are mutually independent.Suppose that these arrivals have been coming into the network since time �1, but there was nosynchronization operation being performed before time 0. That is, the departures on D1(t) andD2(t) were simply allowed to exit the network, without being synchronized and going throughnode 3. In this case, it is immediate that at time 0 all three service queues are in stationarityand their joint distribution is product form. Moreover, at time 0 all three departure processesare Poisson (rate �) and Q3(0) consists only of yellow (ghost) tokens.Step 2: Suppose that the synchronization operation begins at time 0; that is, departures fromservice nodes 1 and 2 are synchronized and driven through node 3. We can then writeX3(t) = Y(t)1lft�0g+nY(t)1lfQA(t�)=0=QB(t�)g +D1(t) 1lfQB(t�)>0g +D2(t) 1lfQA(t�)>0go 1lft>0g:Since the processes D1(t) and D2(t) are Poisson (and independent) for t > 0, an applicationof Lemma 2 shows that X3(t) is Poisson of rate �. Nodes 1 and 2 are in equilibrium at anypositive time. Because of the quasi-reversibility of exponential server nodes [15, 18], it followsthat (Q1(t); Q2(t)) is independent of fD1(s); D2(s)gs<t (in equilibrium, the present state isindependent of past departures). This implies (Q1(t); Q2(t)) is independent of fX3(s)gs<t(by de�nition of X3(t)). Hence it is independent of Q3(t). We therefore conclude that underthe previous scenario of equilibrium at nodes 1 and 2, the quantities Q1(t); Q2(t); Q3(t) aremutually independent for any �xed t > 0, leading to a product-form distribution.Step 3: Finally, we need to show that Q3(t) will eventually consist of only non-yellow (real)tokens with arbitrarily high probability, and the yellow (ghost) tokens will dwindle, restoringthe operation of the actual system. This can directly be proved by arguing as in Theorem 5.The previous arguments show that the service node queue-lengths (Q1(t); Q2(t); Q3(t))have a product-form stationary distribution. Moreover, if �1 = �2 the departure 
ows from allnodes converge weakly to Poisson processes as t!1. On the other hand, if �1 6= �2 the 
ows16



converge strongly (in total variation) to Poisson processes and hence also weakly. This concludesthe proof of the theorem.Completion of the proof of Theorem 4: Given the preceding results, the two parts ofTheorem 4 follow immediately. First, use ghost tokens as in the proof of Theorem 6 to arguethat ~Q(t) converges to a product-form distribution with appropriate marginals. Then, observethat ~D(t) consists of processes that are either departures from stages S0 or S1, or from thesynchronization nodes. Departures from S0 are clearly mutually independent Poisson processes.The use of ghost tokens to make the synchronized departures be Poisson processes implies thatdepartures from S1 converge to Poisson processes that are mutually independent, and indepen-dent of departures from S0. Since all routing is assumed to be Bernoulli, if the departures froma synchronization node are split into two or more processes, then these processes will convergeto mutually independent Poisson processes. (To make this point clear in the context of Figure7, the two 
ows that arise by a splitting of the synchronized departure process from the 2-inputsynchronization node will asymptotically be independent Poisson processes. Thus, all 
ows thatarrive at the synchronization node feeding network N6 are asymptotically mutually independentPoisson processes.) In conclusion, ~D(t) converges to a vector of mutually independent Poissonprocesses as t!1.4 Final Remarks and ConclusionThe previous results on networks assumed that the synchronization skeleton was acyclic. Fornetworks in which the synchronization skeleton is not acyclic, the situation is not clear. Indeed,even for the simplest of cases, there is a problem of \ill-posedness" which is related to theproblem of deadlocks in Petri nets [9]. Consider the network shown in Figure 5. The outputfrom the service queue is E(t), and a fraction (p 2 (0; 1)) of it is Bernoulli-routed back to abu�er of the synchronization queue as F(t), while the remainder forms the output 
ow D(t).When trying to synchronize F(t) and X(t) we run into the following problem. If the server iscurrently idle (Q(t) = 0), then it is impossible to have any new arrivals into the service node,as there will not be any tokens getting routed back to the synchronization node. On the otherhand, for the example in Figure 6, no such problems occur and one may attempt to computethe limiting queue-length and departure process distributions. We are exploring this line ofresearch since the arguments presented in this paper do not naturally extend to the case wherethe synchronization skeleton is non-acyclic.Towards the end of Section 2 we saw that with large enough �nite synchronization bu�ers,one can still have the synchronization process be as close to a Poisson process in distributionas desired. This key point may be applied to the networks of Section 3 to obtain a result ofthe following sort: In a Generalized Jackson Network with an acyclic synchronization skeletonand �nite synchronization bu�ers, the joint distribution of the equilibrium queue-length process(note that equilibrium now exists) at all the exponential server nodes is asymptotically product-form and the equilibrium departure processes converge weakly to independent Poisson processes,as the size of the synchronization bu�ers goes to in�nity. We assume that tokens that arrive atfull bu�ers are blocked and discarded.In conclusion, the dynamics of the synchronization node have been analyzed, both inisolation and in networks of service and synchronization nodes with an acyclic synchronizationskeleton. The main vehicle of analysis was the introduction of \ghost tokens" at synchroniza-17



tion nodes. It has been shown that synchronization preserves the Poissonian nature of 
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Figure 4: Interfacing service queues through synchronization ones. In the modi�ed system thecontrolled 
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